Analytic study of rational quintic surfaces having no multiple curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

Rational curves of degree 10 on a general quintic threefold

We prove the “strong form” of the Clemens conjecture in degree 10. Namely, on a general quintic threefold F in P, there are only finitely many smooth rational curves of degree 10, and each curve C is embedded in F with normal bundle O(−1) ⊕ O(−1). Moreover, in degree 10, there are no singular, reduced, and irreducible rational curves, nor any reduced, reducible, and connected curves with ration...

متن کامل

Counting Curves on Rational Surfaces

In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane curves of degree d and geometric genus g in the plane (through the appropriate number of fixed general points). We rephrase their arguments in the language of maps, and extend them to other rational surfaces, and other specified intersections with a divisor. As applications, (i) we count irreducible curves on Hirzebruc...

متن کامل

Rational curves on K3 surfaces

This document is based on lectures given at the 2007 NATO Advanced Study Institute on ‘Higher-Dimensional Geometry over Finite Fields’, organized at the University of Göttingen by Yuri Tschinkel, and on lectures given at the 2010 summer school ‘Arithmetic Aspects of Rational Curves’, organized at the Institut Fourier in Grenoble by Emmanuel Peyre. This work is supported in part by National Scie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1932

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1932-05378-2